
Scalable Federated Learning Simulations using
Virtual Client Engine in Flower

Thomas Borja, Daniel Alamillo, Anass Anhari, Ilker Demirkol
Dept. of Mining, Industrial and ICT Engineering, Universitat Politecnica de Catalunya, Barcelona, SPAIN

Abstract—Federated Learning (FL) is a novel technology that
has gained significant visibility among the scientific community
and industry. In order to be deployed in real scenarios, Federated
Learning must address some critical challenges. One key chal-
lenge that Federated Learning poses is system scalability, as it is
foreseen that this technology will be deployed in IoT scenarios
with billions of clients in the future. In addition, there are many
ongoing efforts regarding algorithms and frameworks proposed
to foster Federated Learning testing and research. In this work,
we review a recent architecture of the open-source framework
Flower, called Virtual Client Engine (VCE), which allows to
efficiently run simulations with hundreds of users with acceptable
accuracy and keeping the computational resource consumption
low. We compare relevant classification metrics (accuracy, loss)
to classic centralized machine learning approaches and Flower’s
previous architecture named Edge Client Engine (ECE) to show
the improvement in the number of clients while keeping the
accuracy high. For a 200 clients case, we achieve an accuracy of
around 91% for the MNIST and 88% for the SPEECH evaluation
setups, both cases using the VCE Flower architecture.

Index Terms—Federated Learning, flower, virtual client engine,
classification metrics.

I. INTRODUCTION

While traditional Machine Learning applications use data
stored and processed in a centralized fashion, a new paradigm
called Federated Learning (FL) aims to work collaboratively
with numerous clients who share locally trained models or
weights, while keeping their data private [1]. Federated Learn-
ing is a promising technology that will allow us to take
intelligent services to the next level, as it combines powerful
Machine Learning techniques with data generated by users in
a ubiquitous way.

Federated Learning comes with critical challenges that must
be faced before it can be deployed in real scenarios. One is
the massive number of distributed clients participating in the
learning process with an order of hundreds in single cluster
deployments, thousands in Cross-silo FL, and even millions or
billions of connections in Cross-device FL implementations for
futuristic networks with massive parallelism, like IoT [2], [3].
Additionally, it is expected that a high number of simultaneous
connections would produce bottlenecks or dropouts during the
communication process. This problem comes as an inherent
issue due to the hardware heterogeneity of devices or slow
connections due to bandwidth issues of the users [3].

As an active area of research, there has been a significant
contribution to algorithms and frameworks proposed for Fed-
erated Learning. In particular, we have chosen Flower [4]
for running our metrics evaluation. Flower is an end-to-end

open-source Federated Learning framework. Researchers and
academics around the world are actively supporting Flower.
Furthermore, Flower can run Federated Learning simulations
efficiently in a few lines of code for numerous clients. Besides,
one crucial feature of Flower is that it can be built on top
of other well-known Machine Learning platforms, such as
TensorFlow and PyTorch.

To help overcome physical resource consumption and ac-
curacy degradation for simulations involving numerous users,
Flower has recently deployed a new system architecture named
Virtual Client Engine, which uses a Remote Procedure Call, or
RPC, to make virtual clients consume close to zero resources
when inactive, and only loading model and data into memory
when the client is being selected for training, or evaluation [4].
Virtual Client Engine allows for an exponential increase in the
number of participants in the Federated Learning process with
efficient hardware consumption while keeping the accuracy
high. Additionally, the simplicity of Flower, with the efficient
scalability of Virtual Client Engine architecture, allows the
deployment of more complex Federated Learning simulations
with a high number of users on mid-range computers, and not
only in high-capacity supercomputers.

In this work, we propose an evaluation of relevant Federated
Learning classification metrics, such as accuracy, loss, and
execution time. We focus on a Virtual Client Engine imple-
mentation using Flower to show its performance against its
previous technology named Edge Client Engine in terms of
the number of users, resource consumption, and the trade-
off between the number of clients and the accuracy of the
trained model for the MNIST dataset. We finally show that
using Virtual Client Engine leads to acceptable accuracies of
around 91% using 200 simulated clients in Flower.

II. EVALUATION OF FL METRICS WITH FLOWER

Flower is a novel open-source framework that allows to
deployment of Federated Learning simulations with a few
steps and a minimal amount of code to execute. Flower also
provides a seamless transition from experimental simulation
to actual implementations on real devices, specifically devices
with GPU capabilities that have been proven to perform better
on Machine Learning technique tasks, e.g., when working with
Convolutional Neural Networks for image recognition [4].

Flower allows easy integration with popular machine learn-
ing frameworks, such as TensorFlow and PyTorch. Little ad-
ditional coding knowledge is required to evolve from a classic
Machine Learning setup written in Python and TensorFlow



to a Federated Learning setup in Flower. In the end, the
number of users developing a distributed model depends on the
processing capabilities of the computers, servers, or dedicated
hardware.

The following subsections describe some critical aspects
of the Federated Learning simulations in Flower: System
Architecture, the Virtual Client Engine tool, and the Strategies.

1) System Architecture: As in the basic Federated Learning
scenario, Flower uses a conceptual and hardware-agnostic
architecture consisting of two types of elements or nodes:
Aggregator server and collaborator client.

a) Aggregator server: It is the central coordinator in
charge of sending a pre-initialized model to the clients at the
beginning of the process. Then, the server collects the locally
trained models sent by the clients and aggregates them (or
averages) using an aggregation algorithm, such as FedAvg. In
the next cycle step, the server will send the tuned model to
each client in an iterative manner until convergence or some
fatal error appears.

b) Collaborator client: Each one of the clients only can
access their local data. The main task of a client is to locally
train the global model received from the Aggregator Server
and report back the updates of the training results.

Every local training iteration produced at the client nodes
is called an epoch, and every model aggregation produced at
the server node is called a round.

2) Virtual Client Engine: Virtual Client Engine is a vir-
tualization tool recently built into Flower that maximizes
the available hardware utilization [4]. The VCE handles the
scheduling, creation, and running of the Flower Clients in a
user-friendly and transparent way for the user and the Flower
Server. The VCE efficiently launches Flower Clients based
on the pool of clients, their computing and memory needs
(such as the number of CPUs and VRAM requirements), and
the FL-specific parameters (such as the number of clients per
round). This makes parallelizing jobs more manageable and
ensures optimal use of the available hardware, allowing the
same FL experiment to be used on various setups without
making changes - be it a desktop computer, a single GPU rack,
or a multi-node GPU cluster. As a result, the VCE becomes a
crucial component within the Flower framework, allowing for
the efficient execution of large-scale FL tasks with minimal
additional effort in a scalable manner.

3) Hardware specifications: A critical feature of the VCE
architecture in Flower is that it allows running scalable sce-
narios with mid-range computers. For the MNIST evaluations,
we used a computer with a 2,7 GHz Dual-Core Intel Core i5,
5th generation CPU, with 8 GB DDR3 RAM, running Mac
OS. And, for the SPEECH evaluations, we used a computer
with 2,4 GHz Intel Core i9, 12th generation, PCU, with GB
DDR4 RAM, and Ubuntu 20.04 LTS OS. Although the Flower
framework allows CPU and GPU simulations, for this paper
we have used only CPU configurations for simplicity.

4) MNIST and SPEECH Federated Setup: For the public
MNIST dataset, we ran a Federated Learning scenario with the
following conditions: The MNIST complete dataset contains

60.000 training samples and 10.000 testing samples. We use
280 samples per user and a maximum number of 250 clients.
From the split dataset, 240 samples are for training, and 40
are for testing per user. Lastly, we use a Convolutional Neural
Network machine learning algorithm [5], as it performs well
for image recognition.

For the voice command SPEECH dataset, we have 1000
samples for each different command, with a total of 8 com-
mands; this is a total of 8000 samples. We split 30 samples per
client with a maximum number of 250 clients. From the 30
samples, 25 are used for training, 2 for validation to prevent
overfitting, and 3 for testing purposes. We have used the simple
speech recognition model from the Tensorflow official site [6]
as the machine learning algorithm.

For both cases, from the entire set of clients selected, the
whole group is selected for the FL training, where after each
round, half of them will be randomly selected to validate
the training. Finally, the number of clients selected for the
validation process is half the number of available clients. The
complete training process is done in 20 epochs.

5) Flower System Architecture: The following specifica-
tions have been used to simulate our scalable Federated
Learning scenarios:

a) Using the Edge Client Engine (ECE): The Edge
Client Engine from the Flower Architecture will only allow
us to run the simulations with a limited number of users, as
the hardware resources will be depleted. In addition, in this
case, the simulation on the clients should be started manually.
A number of 10 clients is selected for this scenario.

b) Using the Virtual Client Engine (VCE): We have seen
that using the ECE architecture locally on a single machine
having 10 clients means that we are getting 10 instances
of the MnistClients parameter, meaning that they will share
resources such as CPU, GPU, and RAM. Hence increasing the
number of clients instances can quickly exhaust the available
resources. However, with the built-in Virtual Client Engine,
we can adapt the simulations to run for a more significant
number of scenarios. We have selected 50, 100, 150, and 200
simultaneous clients in both cases.

III. RESULTS AND DISCUSSION

After simulating various scenarios using the Flower frame-
work, we can discuss some key points: First, we have de-
ployed an Edge Client Engine-based simulation with 10 users
and some Virtual Client Engine-based simulations with 50,
100, 150, and 200 clients. While both configurations offer
acceptable accuracies, loss curves, and execution times, we
have to emphasize that the VCE simulation allows to run
considerably more users, which translates to a more realistic
scenario. We will direct the discussion to three features for
both of the datasets: Classification metrics, Execution Time,
and Complexity and Resource Consumption.

We present the results obtained for each one of the scenarios
deployed and for the two public datasets used. Each following
subsection contains the results obtained for an specific evalu-
ation meter, as well as the discussion for each item.



Fig. 1. Classification metrics for the MNIST dataset: Flower ECE, 10 clients (left), and Flower VCE, variable number of clients (right).

Fig. 2. Classification metrics for the SPEECH dataset: Flower ECE, 10 clients (left), and Flower VCE, variable number of clients (right).

A. Classification metrics

The results shown in Fig. 1 and Fig. 2 summarize the
accuracy and loss metrics for the two Federated Learning
scenarios. We present the performance results of the three
cases implemented: centralized classic ML, Flower ECE with
10 clients, and Flower VCE with a scalable number of users,
up to a maximum of 200 clients.

For the MNIST dataset, ECE with 10 clients and VCE
with 200 clients have shown acceptable accuracies of 20
epochs for both cases. ECE and VCE reach an accuracy of
approximately 89% and 91%, respectively, showing that even
with more clients, it is possible to achieve better results. The
150-client scenario shows the best accuracy performance with
a difference of some percentage decimals. For the SPEECH
recognition dataset, ECE with 10 clients and VCE with 200
clients reach an accuracy of approximately 87% and 88%,
respectively. In the second case, the accuracy is lower, and
it can vary depending on the complexity of the dataset, the
hyper-parameter tuning, or even the type of algorithm chosen
for the training.

B. Execution times

For the MNIST dataset with VCE architecture, we present
the cumulative training time for 50, 100, 150, and 200 fed-
erated clients in Fig. 3. It is relevant to notice that the time
employed for training 200 clients is not necessarily the double

of the time needed for the 100 client equivalent. Additionally,
the time needed to complete the 200 client training is slightly
above the previous 150 client cases.

Fig. 3. Federated Learning cumulative training time for MNIST dataset with
variable number of users.

We present in Fig. 4 the curve for the cumulative MNIST
dataset with the maximum number of clients of 250 and com-
pare it to the ECE case with 10 clients and to the centralized
Machine Learning training. Although VCE holds the most
simultaneous clients with reduced resource consumption and
high accuracy, the total training time for the ECE architecture
and classic ML is considerably lower.



Fig. 4. Federated Learning cumulative training time for MNIST dataset with
VCE 250 clients, ECE with 10 clients, and using centralized ML.

For the SPEECH dataset with VCE architecture, we present
the total training time for 50, 100, 150, and 200 federated
clients in Fig. 5. In addition, Fig. 5 shows the total train-
ing time required to complete a classic centralized Machine
Learning training and the total time for the ECE scenario with
10 clients, both of the last cases being lower than the VCE
architecture. In the classic ML training approach, all the client
data is accessible at a centralized machine, where the machine
learning model is trained.

Fig. 5. Federated Learning total training time for SPEECH dataset with
variable number of users, ECE case with 10 clients and centralized ML
approach.

It is noticeable that the VCE also shows the highest exe-
cution times, with around 50 minutes (3000 seconds) for the
MNIST dataset and around 100 minutes (6000 seconds) for the
SPEECH dataset, both cases with the most complex scenario
of 250 clients. Although this time may be considered high, it
still benefits from the client scalability feature and keeps the
implementation easy. On the other hand, we cannot compare
this time to the ECE scenario, as it is only possible to run such
several simultaneous clients by exhausting the same physical
resources. Even though the execution time of VCE is the best
strength of the Flower framework, it remains low compared
to other simulations with a high number of users, as stated in
the Literature Review subsection.

C. Complexity and Resource Consumption

ECE and VCE architectures require little coding and con-
figurations before running simulations in Flower. The ECE
architecture needs to be handled with care, as it may cause
some crashes when the dataset is not adequately split or when
the simulation parameters, such as the number of clients, is
too high. Our experiments found that running ECE with 50
clients may cause the RAM to be depleted and freeze the
server. Another difference is that for the ECE case, each one of
the clients should be started manually, while VCE handles the
automation process for the clients. In addition, as ECE showed
a higher resource consumption than VCE in processing and
RAM, the VCE architecture is better for efficient and quick
scalability and lower resource consumption.

Finally, as a benchmark, we ran the simulations for a cen-
tralized classic ML learning scenario using the same datasets
and similar configurations. Figs. 1 and 2 show that it is
possible to achieve a higher accuracy of around 99% in this
scenario. This difference of accuracy shows the challenge of
FL for the accuracy metric.

IV. CONCLUSIONS

The most recent Flower’s system architecture, Virtual Client
Engine, stands as an attractive option to deploy scalable Fed-
erated Learning simulations, achieving decent accuracies with
minimum effort and keeping the physical resource consump-
tion low, allowing it to run on regular mid-term computers.
Hence, it is reachable to more interested people in the academy
and industry. Virtual Client Engine architecture of Flower
shows promising results when simulating Federated Learning
training with hundreds of clients and with low execution times
compared to other studies. Additionally, VCE is agnostic to the
dataset used, the Machine Learning algorithm, or the hyper-
parameter tuning, thus giving it a broad scope of application.

ACKNOWLEDGMENT

This work has been funded partially by the FLAIR and
VEDLIoT projects funded from the European Union’s Horizon
2020 research and innovation programme under grant agree-
ment No 957197.

REFERENCES

[1] H. B. McMahan et al., “Communication-efficient learning of deep net-
works from decentralized data,” Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, AISTATS 2017, 2017.

[2] W. Huang et al., “Fairness and accuracy in federated learning,” 12 2020.
[Online]. Available: http://arxiv.org/abs/2012.10069

[3] W. Y. B. Lim et al., “Federated learning in mobile edge networks: A
comprehensive survey,” IEEE Communications Surveys and Tutorials,
vol. 22, pp. 2031–2063, 7 2020.

[4] D. J. Beutel et al., “Flower: A friendly federated learning research
framework,” 2020. [Online]. Available: http://arxiv.org/abs/2007.14390

[5] S. Tabik et al., “A snapshot of image pre-processing for convolutional
neural networks: case study of mnist,” 2017.

[6] TensorFlow, “Simple audio recognition: Recognizing keywords. url:
https://www.tensorflow.org/tutorials/audio/simple audio,” 2023. [Online].
Available: https://www.tensorflow.org/tutorials/audio/simple audio


